Skip to main content


Showing posts with the label fMRI

Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) Introduction Structural imaging reveals the static physical characteristics of the brain. It makes it useful in diagnosing disease. Functional imaging reveals dynamic changes in brain physiology that might correlate with cognitive functioning, for example. Neural activity consumes oxygen from the blood. This triggers an increase in blood flow to that region and a change for deoxyhemoglobin in that region. As the brain is always physiologically active, functional imaging needs to measure relative changes in physiological activity. The most basic experimental design in functional imaging research is to subtract the activity in each part of the brain whilst doing one task away from the activity in each part of the brain whilst doing a slightly unfamiliar task.  We call this cognitive subtraction . Other methods, including parametric and factorial designs, can minimize many of the problems associated with cognitive subtraction. There is no foolp